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Axisymmetric internal waves generated by a travelling 
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Experiments are presented in which axisymmetric internal waves are generated 
by an oscillating sphere moving vertically in a stably stratified salt solution. 
The Reynolds numbers for the sphere based on the diameter and the mean 
velocity are between 10 and 200. Lighthill’s theory for dispersive waves is used 
to calculate the phase configuration of the internal waves. The agreement be- 
tween experiment and theory is reasonably good. 

1. Introduction 
A body moving in a stably stratified medium can produce internal gravity 

waves. Mowbray & Rarity (1967 b)  discuss the axisymmetric internal waves 
which are generated by a body moving vertically with a constant velocity in a 
uniformly stratified medium. They present schlieren pictures showing a ‘ herring 
bone’ wave pattern behind the forcing region with no disturbances ahead of it. 
The wave system is stationary relative to the disturbance and the phase con- 
figuration of the waves agrees well with Lighthill’s (1967) theory for dispersive 
waves. 

In  this note experiments are described in which an oscillating sphere is moved 
vertically in a uniformly stratified salt solution. The waves due to the oscillation 
are sometimes present ahead of the body and are not stationary relative to the 
forcing region. The axisymmetric wave patterns generated are shown to com- 
pare reasonably well with the linear theory for small amplitude waves. 

2. Theoretical predictions 
Lighthill’s (1967) theory for waves generated in dispersive systems by travel- 

ling disturbances will be applied to this problem. We shall use cylindrical polar 
axes fixed in the body, with r in the horizontal plane and y positive upwards, 
moving with the body velocity V in the y-direction. If the wavelengths of the 
internal gravity waves are short compared with the density scale Ip,/(dpo/dy)l, 
the dispersion relation takes the form (Mowbray & Rarity 1967 b)  

P(w, a,/?) = w2(a2+P2) -wEu2 = 0. (1) 
po is the density of the undisturbed fluid, a and p are the wave-numbers in the 
r- and y-directions and 61; = - (g/po)/(dpo/dy) is the square of the Vaisala-Brunt 
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frequency which will be considered constant. w = (of + VB) is the frequency 
governing the direction in which energy is propagated and uf is the frequency 
of the oscillatory forcing effect. Equation (1) is written in the parametric form 

(2) 
from which the wave-number curves in figure 1 are calculated. N is the frequency 
ratio, wfIwo. 

Vploo = & sin I9 - N ,  Valw, = - ( Vplwo) tan 8 
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Energy can only propagate away from a disturbance, which implies from 
Lighthill's rule that the waves which exist in a certain direction from the forcing 
region are those with wave-numbers corresponding to points on the wave- 
number surface which have normals, drawn towards higher w, which point in that 
particular direction. From figure 1 it is seen that waves are not present ahead of 
the body when N = 0 which is the steady case treated by Lighthill (1967) and 
Mowbray & Rarity (1967 b) .  When N < 1 the wave-number curves pass through 
the origin and the tangents at  the origin are inclined at  an angle I9 to the vertical 
where 8 satisfies N = f sin 0. This corresponds to the solution for an oscillating 
forcing region with V zero which was considered by Mowbray & Rarity (1967a). 

The wave system is found in front of, as well as behind, the body when N is 
between 0 and 1.1, that is providing the body excites the relevant wave-numbers. 
When N > 1-1 the waves due to the oscillation are restricted to a conical region 
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behind the body and the included angle of this region will reduce as N is 
increased. 

The locus of points of constant phase is given by AVP/(K . VP) where A is a 
constant, K is the wave-number vector and V is the gradient operator in K space. 
If B = (sin 0 - N)-l  the phase configuration evaluated from (1) takes the form 

( r ,  tj)w,/(A V )  = B(B C O S ~  0, B sin0 cos2 0 + 1) (3) 

H 

FIGURE 2. Lines of constant phase plotted as ywo/(A V )  against m o / ( A  V )  with N equal to 
0.4 in (a) and ( b ) ,  1.0 in (c) and 1-4 in (d ) .  The arrows on the curves represent the direction 
and relative magnitude of the phase velocity compared with the velocity of the body, also 
represented by an arrow. The scale mark is of length 100 units in (a) and of length unity 
in (b) ,  (c) and (d ) .  The dashed lines correspond to the steady wave system for which 
N = 0. 

which is shown in figure 2 for values of the frequency ratio N of 0-4, 1.0 and 1.4. 
Physically, 0 is the angle which the group velocity makes with the horizontal. 
When N > 1, cusps occur at  

( r ,  y) w,l(A V )  = (0, ( k 1 - N-9 
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and at positions corresponding to 

When N < 1 cusps occur at  (r,  y ) w , / ( A  V )  = (0, - (1 2 N)- l ) .  
The waves due to the oscillation are moving relative to the undisturbed fluid 

with a phase velocity V, = wK/(a2  + 8 2 )  or V, = V B  sin 0 cos 8 in the direction of 
wK. The direction and the relative magnitudes of V, are shown by the arrows in 
figure 2. There is zero phase velocity where lines of constant phase have a hori- 
zontal tangent. A particular wave shape with horizontal tangents increases in 
size remaining geometrically similar but with the points having horizontal 
tangents remaining in the same horizontal plane. The waves around a body 
which is moving with constant velocity without oscillating do not have any 
horizontal tangents except at  infinity. 

We shall now consider the phase configuration of the waves near an oscillating 
body in a region with fixed physical dimensions. When the body is moving very 
slowly the situation corresponds to figure 2 plotted with axes having very large 
values of the co-ordinates. When the body moves at successively higher velocities 
the phase configuration of the waves we are looking at corresponds to the shapes 
which occur in a smaller and smaller region around the origin in figure 2. As an 
example, in figures 2 ( a )  and ( b )  the phase configuration for N = 0.4 is shown with 
scale lengths of 100 units and unity respectively. Figure 2( a)  corresponds to the 
small velocity and the wave shapes are obviously closer to the ' St Andrews cross 
waves', which were considered by Mowbray & Rarity (1967a), than the wave 
shapes in figure 2 (b).  

Equation (3) has been used to calculate the wave patterns shown in figure 4 ( b ) ,  
(d ) ,  ( f )  (plate 1) and figure 5 (b ) ,  (d) ,  (f) (plate 2 ) .  These figures show wave patterns 
for several values of the frequency ratio, N ,  varying between 0.70 and 1-7 1 for 
particular values of the body velocity and the Vaisala-Brunt frequency. The 
dashedlines in the figures are the steady system of waves corresponding to N = 0. 
Only the first few waves of each system are drawn. 

sin8 = 1.5N-((1-5N)2-2)t.  

3. Experiments 
The glass sided tank which is 160 ern long, 90 cm high and 55 cm from front 

to back was filled with a stratified salt solution having a constant density 
gradient. Mowbray (1966) describes the way in which the tank is filled and also 
describes the schlieren system. The light beam passing through the tank is 
46 cm in diameter. The scale of appreciable density variations, (p,/(dp,/dy)) is 
typically 500 em and a typical wavelength in the experiments is of the order of 
5 cm so that the waves are short. The Vaisala-Brunt frequency was assumed to 
be a constant in the theory whereas in the experiments it varies slightly. How- 
ever, the bending of the wave crests which results from this discrepancy is small 
in the present experiments. The effect is discussed by Mowbray & Rarity (1967 a).  

A 2-54 cm diameter sphere is suspended with a thin nylon line from a system 
of pulleys and levers operated by two small electric motors so that the sphere can 
be drawn vertically through the stratified solution with a constant velocity on 
which is superimposed an oscillation of known frequency. The higher harmonics 
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are of small amplitude. The amplitude of the oscillation is 2 cm which is rather 
large but this ensures that the waves due to the oscillation can be seen in the 
presence of the steady moving wave system. 

In figure 3 the theoretical wave spacing, s, is compared with that measured 
from photographs and cine film. The solid line is the theoretical spacing in the 
direction of the cusps which lie off the axis of symmetry and the chain dotted line 
is the spacing along the horizontal axis, y = 0. The two lines meet when the cusps 
lie along the horizontal axis. Some points taken from the low velocity runs are 
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FIQERE 3. Wave spacing. The solid line is the theoretical spacing in the direction of the 
cusps which are not on the axis of symmetry and the chain dotted line is the spacing along 
the horizontal axis, y = 0. 8 is the distance between wave crests measured along radial 
lines from the mean position of the sphere. Experimental results are represented by: 
A, for the spacing of the cusps; 0 ,  for the spacing along the horizontal axis when 
Y > 0.2 cm/s and x ,  when V < 0.2 cm/s. 

shown to have a larger wave spacing than predicted. Some photographs of the 
wave systems are compared with the theoretical patterns in plates 1 and 2. 
When N > 1 the agreement between the theory and the experiments is very 
good. When N < 1 and the velocity of the sphere is greater than 0.2 cm/s the 
waves which sweep ahead of the sphere agree very well with theory but the waves 
behind the sphere tend to have a slightly larger wavelength. When N < 1 and 
J' < 0.2 cm/s both sets of waves have slightly larger wavelengths. Experiments 
using a smaller amplitude of oscillation and a smaller sphere still show the same 
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tendency, but as the wave strength is reduced in this way it becomes difficult 
to see the waves with the schlieren system. However, considering the large 
amplitude of oscillation in the main set of experiments the agreement between 
the theory and the experiments is remarkably good. 

In figure 4 (a) (plate 1) the sphere is moving with a velocity of 0-106 cm/s and 
this is so slow that the steady wave system is not visible. In  the other photographs 
in plates 1 and 2 the velocity ranges between 0.29 cm/s and 0-57 cm/s and the 
steady wave system is clearly seen. The flow around the sphere is apparently 
producing all the relevant wave-numbers and frequencies because all the waves 
predicted by the theory are present in the experiments with one exception. In 
figure 4 (e )  (plate 1) the waves which should have been almost vertical are not 
present because the sphere has not been travelling for a long enough distance. 
These portions of the waves would have been generated when the body was a very 
long way from the field of view. However, the body was only set in motion about 
15 ern outside the field of view. 

From figure 2 it is seen that the waves trailing behind the body have large 
phase velocities towards the body. If V, > V cos 8 then the waves are overtaking 
the body and are therefore moving faster than the steady wave system. As waves 
can only exist in certain regions, successive wave crests eventually disappear in 
a manner similar to that which occurs when a body oscillates with no mean 
velocity. 

As I? is increased the kite-shaped waves decrease in size so that when N is 
greater than about 2.5 the waves near the body are so small that they are en- 
closed by the wake. There was no regular vortex shedding in the experiments and 
the turbulence frequencies in the wake were too high to produce a visible wave 
system. 

4. Conclusion 
The phase configuration of the axisymmetric internal waves generated around 

a travelling oscillating sphere has been shown to agree reasonably well wit,h the 
linear theory for small amplitude waves. 

Acknowledgement is made to the Ministry of Technology who supported this 
work. 
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FIGURE 4. Experimental and theoretical wave patterns when o,, = 1.14 rad/s. The scale 
marks represent a length of 5 em. ( a )  and ( b )  V = 0.106 cm/s, N = 0.70. ( c )  and ( d )  
V = 0.35 cm/s, N = 0.84. (e) and (f) V = 0.29 cm/s, N = 1.02. 

STEVENSON (Pacing p .  224) 
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FIGURE 5 .  Experimental and theoretical wave patterns when oo = 1.14 rad/s. The scale 
marks represent a length of 5 em. (a)  and ( b )  V = 0.30 cm/s, N = 1.06. (c) and ( d )  V = 
0-55 cm/s, N = 1.37. ( e )  and ( f )  V = 0.57 cm/s, N = 1.71. 
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